Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36462602

RESUMO

Post-traumatic stress disorder (PTSD) is a serious mental disease featured by a stress dysfunction that occurs after an individual has faced intense mental stress, often accompanied by anxiety and chronic pain. Currently, the mainstream drug for PTSD is serotonin reuptake inhibitors (SSRIs), however, their pain management for patients is limited. Baicalein, a Chinese traditional herbal medicine, has shown promising results in treating anxiety, depression, and pain. In this study, we found that baicalein may alleviate single prolonged stress (SPS)-induced PTSD-like behaviors in mice without altering baseline nociceptive sensitivity or activity. Meanwhile, baicalein increased the noradrenaline (NE) and serotonin (5-HT) content and decreased the ratio of 5-hydroxyindoleacetic acid (5-HIAA)/5-HT by inhibiting the activity of monoamine oxidase A (MAO-A) in SPS-induce mice. The anxiolytic and antinociceptive effects induced by baicalein were totally abolished by 5-HT depleting agents. Moreover, the anxiolytic effects of baicalein could be abolished by the 5-HT1A receptor antagonist WAY-100635, and the analgesic effects could be abolished by delta-opioid receptor antagonists in the spinal. Taken together, our study provides compelling evidence that baicalein reversed anxiety-like behaviors and neuropathic pain in PTSD through serotonergic system and spinal delta-opioid receptors.


Assuntos
Ansiolíticos , Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Serotonina , Antagonistas da Serotonina/farmacologia , Analgésicos/farmacologia , Receptores Opioides
2.
Biol Pharm Bull ; 45(6): 738-742, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314522

RESUMO

Nutmeg, a dried seed kernel of a tall evergreen Myristicaceae tree, is widely used as a spice and herbal medicine and is known to have antidepressant-like effects. This study evaluates the mechanisms underlying this antidepressant-like effect and safety of nutmeg n-hexane extract (NNE) in mice. Tail suspension and open field tests showed that NNE (10 mg/kg, per OS (p.o.)) significantly decreased the immobility time of mice without effecting their spontaneous locomotor activity. The reduction of immobility time of mice elicited by NNE was significantly inhibited by ketanserin (5-hydroxytryptamine (5-HT)2A/2C receptor antagonist), ondansetron (5-HT3 receptor antagonist), and yohimbine (α2 receptor antagonist). WAY100635 (5-HT1A receptor antagonist) tended to inhibit the effect of NNE but without significance. Testing according to the Organisation for Economic Co-operation and Development Guidelines, no mice died due to administrated NNE (2000 mg/kg, p.o.), and behavioral and weight changes were not seen in the acute toxicity test. In the Ames test, no increase in the number of revertant colonies for each bacterial strain test strains TA98 and TA100 by nutmeg powder was observed either with or without metabolic activity by S9 mix. These results suggest that NNE shows an antidepressant-like effect involving various serotonergic and noradrenergic nervous systems and maybe a highly safe natural preparation.


Assuntos
Myristica , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Elevação dos Membros Posteriores/métodos , Camundongos , Myristica/metabolismo , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Natação
3.
Viruses ; 13(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34452405

RESUMO

Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico-informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, "Adrenergic receptor antagonist", "ATPase inhibitor", "NF-kB pathway inhibitor" and "Serotonin receptor antagonist", were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.


Assuntos
Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Transcriptoma , Adenosina Trifosfatases/antagonistas & inibidores , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Antivirais/farmacologia , Encéfalo/metabolismo , Simulação por Computador , Dengue/sangue , Dengue/genética , Dengue/metabolismo , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Fígado/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , NF-kappa B/metabolismo , Antagonistas da Serotonina/farmacologia , Antagonistas da Serotonina/uso terapêutico , Dengue Grave/sangue , Dengue Grave/tratamento farmacológico , Dengue Grave/genética , Dengue Grave/metabolismo , Baço/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281274

RESUMO

It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.


Assuntos
Ginsenosídeos/farmacologia , Proteína Quinase C-delta/metabolismo , Antagonistas da Serotonina/farmacologia , Síndrome da Serotonina/prevenção & controle , Acetofenonas/farmacologia , Anfetaminas/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Benzopiranos/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/farmacologia , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Inibidores de Proteínas Quinases/farmacologia , Serotonina/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Síndrome da Serotonina/induzido quimicamente , Síndrome da Serotonina/fisiopatologia
5.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673167

RESUMO

The leaves of Homalomena aromatica are traditionally used in Bangladesh for the treatment of different chronic ailments. The purpose of this study was to explore in vitro antioxidant, thrombolytic activities, and in vivo neuropharmacological effects of methanolic extract of Homalomena aromatica (MEHA) leaves. Antioxidant activity of MEHA was assessed by a DPPH free radical scavenging assay and total phenolics content, total flavonoids content were also measured. The thrombolytic activity was determined by percentage of clot lysis and neuropharmacological activities by hole board, tail suspension, forced swimming and elevated plus maze tests. The results showed that the IC50 value of the extract against DPPH was 199.51 µg/mL. Quantitative analysis displayed higher contents of phenolics and flavonoids (147.71 mg gallic acid equivalent/g & 66.65 mg quercetin equivalent/g dried extract, respectively). The extract also showed a significant clot lysis (33.31%) activity. In case of anxiolytic activity, the elevate plus maze (EPM) test demonstrated an increase in time spent in open arms, and in case of hole board test, the number of head dipping was also significantly increased (p < 0.05). All the test compared with control (1% Tween in water) and standard (diazepam 1 mg/kg), significant dose (200 & 400 mg/kg) dependent anxiolytic activity was found. In antidepressant activity, there was a significant decrease in period of immobility in both test models (tail suspension and forced swimming) (p < 0.05). Moreover, 13 compounds were identified as bioactive, showed good binding affinities to xanthine oxidoreductase, tissue plasminogen activator receptor, potassium channel receptor, human serotonin receptor targets in molecular docking experiments. Furthermore, ADME/T analysis revealed their drug-likeness, likely pharmacological actions and non-toxic upon consumption. Taken together, our finding support the traditional medicinal use of this plant, which may provide a potential source for future drug discovery.


Assuntos
Antioxidantes/química , Araceae/química , Fibrinolíticos/química , Extratos Vegetais/química , Animais , Antidepressivos/química , Antidepressivos/farmacologia , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Simulação por Computador , Tempo de Lise do Coágulo de Fibrina , Fibrinolíticos/farmacologia , Flavonoides/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Neurofarmacologia , Fenóis/química , Picratos/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Receptores de Serotonina/química , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Natação
6.
Artigo em Inglês | MEDLINE | ID: mdl-32371105

RESUMO

Monoaminergic and oxidative dysfunctions have been reported to play a role in depression. The present study investigated the antioxidant potential as well as the antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) in male Swiss mice. Time and dose-response curves were analyzed with the forced swim (FST) and tail suspension (TST) tests, in which SeBZF1 elicited antidepressant-like effects. Serotonergic mechanisms were investigated in the TST. The pre-administration of WAY100635 (selective 5-HT1A receptor antagonist, 0.1 mg/kg, subcutaneous route), ketanserin (5-HT2A/2C receptor antagonist, 1 mg/kg, intraperitoneal route, i.p.), and chlorophenylalaninemethyl ester (p-CPA) (selective tryptophan hydroxylase inhibitor, 100 mg/kg, i.p., for 4 days), but not of ondansetron (selective 5-HT3 receptor antagonist, 1 mg/kg, i.p.), abolished the antidepressant-like action of SeBZF1 (50 mg/kg, intragastric route, i.g.). Co-administration of sub-effective doses of SeBZF1 (1 mg/kg, i.g.) and fluoxetine (5 mg/kg, i.p., selective serotonin reuptake inhibitor) was effective in producing anti-immobility effects in the TST, revealing a synergistic effect. Besides, p-CPA induced hippocampal oxidative stress, characterized by a reduction of total thiols and lipoperoxidation, which was reversed by SeBZF1 (50 mg/kg). The in vitro screening of the antioxidant action of SeBZF1 in brain tissue reinforced these results. Lastly, SeBZF1 did not cause systemic toxicity at a high dose (300 mg/kg). In summary, the present study demonstrated that SeBZF1 exerted antidepressant-like action in male mice which appears to be mediated by the serotonergic system. Moreover, SeBZF1 elicited in vitro antioxidant action in brain tissue, attenuated the hippocampal oxidative damage induced by 5-HT depletion in mice and showed no toxic signs.


Assuntos
Antidepressivos/farmacologia , Antioxidantes/farmacologia , Serotoninérgicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Fluoxetina/farmacologia , Ketanserina/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Atividade Motora , Ondansetron/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Antagonistas da Serotonina/farmacologia
7.
J Nutr ; 150(7): 1966-1976, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386234

RESUMO

BACKGROUND: L-tryptophan (Trp) has been reported to regulate gut immune responses during inflammation. However, the underlying mechanisms are largely unknown. OBJECTIVE: We investigated the role of Trp supplementation on the serotonin receptor (HTR)-mediated immune response in the colon of mice with dextran sodium sulfate (DSS)-induced colitis. METHODS: In Experiment 1, male C57BL/6 mice were randomly assigned to 1 of 4 groups: Control (Con) or L-Trp supplementation [0.1 mg/(g body weight·d) in drinking water] (Trp) with (+DSS) or without 2% DSS in drinking water from days 8 to 14 of the 17-d study. In Experiments 2 and 3, Trp + DSS (Expt. 2) or DSS (Expt. 3) mice were treated as described above and subcutaneously administered with HTR1A or HTR4 antagonists (or their combination) or an HTR2 agonist from days 8 to 14 of the 15-d study. Changes in immune cell phenotypes, inflammatory mediators, and related cell signaling molecules were assessed by flow cytometry, real-time PCR, or Western blot. The mRNA abundances of Trp hydroxylase (Tph1), serotonin reuptake transporter (Slc6a4), and Htr in the colon were also assessed. RESULTS: Trp supplementation before DSS treatment upregulated the expression of colonic Slc6a4 (0.49 compared with 0.30), Htr1a (1.14 compared with 0.65), and Htr4 (1.08 compared with 0.70), downregulated the expression of Htr2a (1.54 compared with 1.89), and decreased the colonic serotonin concentration (11.5 compared with 14.8 nmol/g tissue) (P < 0.01). Trp regulated the DSS-induced immune response partly through attenuating the activation of toll-like receptor 4 (TLR4)-STAT3 signaling and nucleus p-65. Either an HTR2 agonist or HTR1A and HTR4 antagonists reversed the effects of Trp. CONCLUSIONS: In mice treated with DSS, Trp supplementation before DSS administration improved colonic immune responses partly by reducing colonic serotonin and subsequent interactions with HTR1A and HTR4, which are known to be present on neutrophils and macrophages.


Assuntos
Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Suplementos Nutricionais , Homeostase/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , Triptofano/farmacologia , Animais , Colite/induzido quimicamente , Dieta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Distribuição Aleatória , Antagonistas da Serotonina/administração & dosagem , Triptofano/administração & dosagem
8.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283606

RESUMO

The essential oil obtained by the fresh fruit of Citrus bergamia Risso et Poiteau is used worldwide in aromatherapy to reduce pain, facilitate sleep induction, and/or minimize the effects of stress-induced anxiety. Preclinical pharmacological data demonstrate that bergamot essential oil (BEO) modulates specific neurotransmissions and shows an anxiolytic-relaxant effect not superimposable to that of the benzodiazepine diazepam, suggesting that neurotransmissions, other than GABAergic, could be involved. Several studies on essential oils indicate a role for serotonergic (5-HT) neurotransmission in anxiety. Interestingly, among serotonergic receptors, the 5-HT1A subtype seems to play a key role in the control of anxiety. Here, we report that modulation of the 5-HT1A receptor by selective agonist ((±)8-OH-DPAT) or antagonist (WAY-100635) may influence some of the anxiolytic-relaxant effects of BEO in Open Field and Elevated Plus Maze tests.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/metabolismo , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Ansiolíticos/química , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto , Atividade Motora , Óleos Voláteis/química , Piperazinas/farmacologia , Óleos de Plantas/química , Piridinas/farmacologia , Ratos , Roedores , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
9.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731603

RESUMO

The presence of dominant active compounds in standardised methanol extract from the leaves of Stizolophus balsamita (S. balsamita) was examined using HPLC with a diode-array detector. The extract and three dominant parthenolide derivatives were tested with Serotonin Research ELISA for their ability to inhibit the serotonin release from platelets. The antiserotonin effect of the extract was compared with that of parthenolide, a compound with proven antiserotonin and antimigraine effects. This study aimed to evaluate the ability of natural parthenolide derivatives to inhibit serotonin release from platelets. Izospiciformin, stizolin and stizolicin were analysed along with the standardised alcohol extract of S. balsamita leaves, which also contained four other parthenolide derivatives. All the analysed substances were found to inhibit serotonin release from platelets as compared with the control sample, which had 100% of serotonin released. Izospiciformin had the most significant impact (97.98% serotonin release inhibition). The effect of the methanol extract of S. balsamita on the serotonin release inhibition was also statistically significant.


Assuntos
Asteraceae/química , Plaquetas/metabolismo , Extratos Vegetais , Folhas de Planta/química , Antagonistas da Serotonina , Serotonina/metabolismo , Sesquiterpenos , Animais , Feminino , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Antagonistas da Serotonina/química , Antagonistas da Serotonina/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia
10.
Bioorg Med Chem Lett ; 29(21): 126667, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31547945

RESUMO

Due to numerous side effects of current antidepressants, the search for new, safer bioactive compounds is still a valid research topic in medical chemistry. In our research we decided to synthesize and determine SAR for new hexyl arylpiperazines (LACPs) derivated with saccharin moiety. High biological activity has been explained using molecular modelling methods. The compounds obtained show high affinity for the 5-HT1A (compound 18, Ki = 4 nM - antagonist mode) and D2 (compound 15, Ki = 7 nM - antagonist mode) receptor, and in some cases also 5-HT7 receptor (compound 17, Ki = 20 nM). A preliminary ADME analysis showed that the compounds exhibit CNS drugability properties. We have proved that carbon-chain lengthening may have a beneficial effect on increasing the activity towards serotonin and dopamine receptors.


Assuntos
Antidepressivos/síntese química , Antagonistas de Dopamina/química , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo , Sacarina/química , Antagonistas da Serotonina/química , Antidepressivos/farmacologia , Sítios de Ligação , Antagonistas de Dopamina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ligantes , Modelos Moleculares , Estrutura Molecular , Piperazinas/química , Ligação Proteica , Serotonina , Antagonistas da Serotonina/farmacologia , Relação Estrutura-Atividade , Termodinâmica
11.
Br J Pharmacol ; 176(20): 4002-4018, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31347694

RESUMO

BACKGROUND AND PURPOSE: Lurasidone is an atypical mood-stabilizing antipsychotic with a unique receptor-binding profile, including 5-HT7 receptor antagonism; however, the detailed effects of 5-HT7 receptor antagonism on various transmitter systems relevant to schizophrenia, particularly the thalamo-insular glutamatergic system and the underlying mechanisms, are yet to be clarified. EXPERIMENTAL APPROACH: We examined the mechanisms underlying the clinical effects of lurasidone by measuring the release of l-glutamate, GABA, dopamine, and noradrenaline in the reticular thalamic nucleus (RTN), mediodorsal thalamic nucleus (MDTN) and insula of freely moving rats in response to systemic injection or local infusion of lurasidone or MK-801 using multiprobe microdialysis with ultra-HPLC. KEY RESULTS: Systemic MK-801 (0.5 mg·kg-1 ) administration increased insular release of l-glutamate, dopamine, and noradrenaline but decreased GABA release. Systemic lurasidone (1 mg·kg-1 ) administration also increased insular release of l-glutamate, dopamine, and noradrenaline but without affecting GABA. Local lurasidone administration into the insula (3 µM) did not affect MK-801-induced insular release of l-glutamate or catecholamine, whereas local lurasidone administration into the MDTN (1 µM) inhibited MK-801-induced insular release of l-glutamate and catecholamine, similar to the 5-HT7 receptor antagonist SB269970. CONCLUSIONS AND IMPLICATIONS: The present results indicate that MK-801-induced insular l-glutamate release is generated by activation of thalamo-insular glutamatergic transmission via MDTN GABAergic disinhibition resulting from NMDA receptor inhibition in the MDTN and RTN. Lurasidone inhibited this MK-801-evoked insular l-glutamate release through inhibition of excitatory 5-HT7 receptor in the MDTN. These effects on thalamo-insular glutamatergic transmission may contribute to the antipsychotic and mood-stabilizing actions of lurasidone.


Assuntos
Antipsicóticos/farmacologia , Maleato de Dizocilpina/antagonistas & inibidores , Cloridrato de Lurasidona/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Antipsicóticos/administração & dosagem , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Cloridrato de Lurasidona/administração & dosagem , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Perfusão , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Antagonistas da Serotonina/administração & dosagem , Transmissão Sináptica/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
12.
J Neurophysiol ; 121(1): 96-104, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461363

RESUMO

Osteoarthritis (OA) is a debilitating conditioning with pain as the major clinical symptom. Understanding the mechanisms that drive OA-associated chronic pain is crucial for developing the most effective analgesics. Although the degradation of the joint is the initial trigger for the development of chronic pain, the discordance between radiographic joint damage and the reported pain experience in patients, coupled with clinical features that cannot be explained by purely peripheral mechanisms, suggest there are often other factors at play. Therefore, this study considers the central contributions of chronic pain, using a monoiodoacetate (MIA) model of OA. Particularly, this study explores the functionality of descending controls over the course of the model by assessing diffuse noxious inhibitory controls (DNIC). Early-phase MIA animals have a functional DNIC system, whereas DNIC are abolished in late-phase MIA animals, indicating a dysregulation in descending modulation over the course of the model. In early-phase animals, blocking the actions of spinal α2-adrenergic receptors completely abolishes DNIC, whereas blocking the actions of spinal 5-HT7 receptors only partially decreases the magnitude of DNIC. However, activating the spinal α2-adrenergic or 5-HT7 receptors in late-phase MIA animals restored DNIC-induced neuronal inhibition. This study confirms that descending noradrenergic signaling is crucial for DNIC expression. Furthermore, we suggest a compensatory increase in descending serotonergic inhibition acting at 5-HT7 receptors as the model progresses such that receptor activation is sufficient to override the imbalance in descending controls and mediate neuronal inhibition. NEW & NOTEWORTHY This study showed that there are both noradrenergic and serotonergic components contributing to the expression of diffuse noxious inhibitory controls (DNIC). Furthermore, although a tonic descending noradrenergic tone is always crucial for the expression of DNIC, variations in descending serotonergic signaling over the course of the model mean this component plays a more vital role in states of sensitization.


Assuntos
Controle Inibitório Nociceptivo Difuso/fisiologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Serotonina/metabolismo , Medula Espinal/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Controle Inibitório Nociceptivo Difuso/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ácido Iodoacético , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norepinefrina/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos
13.
Behav Brain Res ; 359: 467-473, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471311

RESUMO

5-HT7 receptors have been suggested to play a role in the regulation of psychiatric disorders. The experimental literature however is not fully consistent on this possibility. Two selective 5-HT7 receptor antagonists, DR-4004 and SB-269970, were evaluated in mouse models used to detect drugs used to treat anxiety, depression, or schizophrenia. A 5-HT-induced hypothermia assay was used to define the doses of DR-4004 and SB-269970 predicted to impact 5-HT7 receptors in the brain in vivo. 5-HT produced hypothermia in wildtype mice by either i.p. or i.c.v. routes but did not in 5-HT7 receptor knockout mice. 5-HT-induced hypothermia was not attenuated by drugs selectively blocking alpha1 or 5-HT1A receptors. Doses of DR-4004 and SB-269970 that blocked 5-HT-induced hypothermia, did not display significant anxiolytic-like (elevated plus maze; vogel conflict) or antidepressant-like efficacy (tail-suspension test) in mouse models. These compounds did demonstrate some antipsychotic-like properties in the PCP-induced hyperactivity assay and anxiolytic/anti-stress effects in the stress-induced cGMP assay. Negative findings were substantiated by positive control drugs that were active in each assay system. We conclude that 5-HT-induced hypothermia can be used to estimate blockade of central 5-HT7 receptors. Effects of DR-4004 and SB-269970 in animal models are generally consistent with the experimental literature that the evidence is mixed or not robust regarding the potential efficacy of 5-HT7 receptor antagonism in the treatment of anxiety, depression, or schizophrenia.


Assuntos
Indóis/farmacologia , Fenóis/farmacologia , Psicotrópicos/farmacologia , Piridinas/farmacologia , Receptores de Serotonina , Antagonistas da Serotonina/farmacologia , Sulfonamidas/farmacologia , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismo , Temperatura Corporal/efeitos dos fármacos , GMP Cíclico/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Hipotermia/induzido quimicamente , Indóis/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fenóis/química , Psicotrópicos/química , Piridinas/química , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Antagonistas da Serotonina/química , Sulfonamidas/química
14.
Proc Natl Acad Sci U S A ; 115(45): E10740-E10747, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348769

RESUMO

Orexin (also known as hypocretin) neurons in the hypothalamus play an essential role in sleep-wake control, feeding, reward, and energy homeostasis. The likelihood of anesthesia and sleep sharing common pathways notwithstanding, it is important to understand the processes underlying emergence from anesthesia. In this study, we investigated the role of the orexin system in anesthesia emergence, by specifically activating orexin neurons utilizing the designer receptors exclusively activated by designer drugs (DREADD) chemogenetic approach. With injection of adeno-associated virus into the orexin-Cre transgenic mouse brain, we expressed the DREADD receptor hM3Dq specifically in orexin neurons and applied the hM3Dq ligand clozapine to activate orexin neurons. We monitored orexin neuronal activities by c-Fos staining and whole-cell patch-clamp recording and examined the consequence of orexin neuronal activation via EEG recording. Our results revealed that the orexin-DREADD mice with activated orexin neurons emerged from anesthesia with significantly shorter latency than the control mice. As an indication of reduced pain sensitivity, these orexin-DREADD mice took longer to respond to the 55 °C thermal stimuli in the hot plate test and exhibited significantly less frequent licking of the formalin-injected paw in the formalin test. Our study suggests that approaches to activate the orexin system can be beneficial in postoperative recovery.


Assuntos
Período de Recuperação da Anestesia , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores de Orexina/genética , Orexinas/genética , Dor/genética , Anestésicos Inalatórios , Animais , Clozapina/farmacologia , Dependovirus/genética , Dependovirus/metabolismo , Eletroencefalografia , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Isoflurano , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Dor/fisiopatologia , Dor/prevenção & controle , Medição da Dor , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Antagonistas da Serotonina/farmacologia , Técnicas Estereotáxicas
15.
Neuropharmacology ; 143: 29-37, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240783

RESUMO

Descending brainstem control of spinal nociceptive processing permits a dynamic and adaptive modulation of ascending sensory information. Chronic pain states are frequently associated with enhanced descending excitatory drive mediated predominantly through serotonergic neurones in the rostral ventromedial medulla. In this study, we examine the roles of spinal 5-HT2A and 5-HT3 receptors in modulating ascending sensory output in normal and neuropathic states. In vivo electrophysiology was performed in anaesthetised spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus. In sham rats, block of spinal 5-HT3Rs with ondansetron revealed tonic facilitation of noxious punctate mechanical stimulation, whereas blocking 5-HT2ARs with ketanserin had minimal effect on neuronal responses to evoked stimuli. The inhibitory profiles of both drugs were altered in SNL rats; ondansetron additionally inhibited neuronal responses to lower intensity punctate mechanical stimuli and noxious heat evoked responses, whereas ketanserin inhibited innocuous and noxious evaporative cooling evoked responses. Neither drug had any effect on dynamic brush evoked responses nor on spontaneous firing rates in both sham and SNL rats. These data identify novel modality and intensity selective facilitatory roles of spinal 5-HT2A and 5-HT3 receptors on sensory neuronal processing within the spinothalamic-somatosensory cortical pathway.


Assuntos
Neuralgia/metabolismo , Dor Nociceptiva/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Ketanserina/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ondansetron/farmacologia , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos , Nervos Espinhais/lesões , Tálamo/metabolismo
16.
Neuropharmacology ; 139: 173-181, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30005975

RESUMO

Increasing evidence suggests that multiple factors can produce effects on the immature brain that are distinct and more long-lasting than those produced in adults. The hypothalamic paraventricular nucleus (PVN) is a region integral to the hypothalamic-pituitary-adrenal axis and is affected by anxiety, depression, and drugs used to treat these disorders, yet receptor signaling mechanisms operative in hypothalamus prior to maturation remain to be elucidated. In peripubertal male rats, systemic injection of the selective serotonin 1A (5-HT1A) receptor agonist (+)8-OH-DPAT (0.2 mg/kg) markedly elevated plasma levels of oxytocin and adrenocorticotropic hormone (ACTH) at 5 and 15 min post-injection. The 5-HT1A receptor selectivity was demonstrated by the ability of the 5-HT1A receptor selective antagonist WAY100635 to completely block both oxytocin and ACTH responses at 5 min, with some recovery of the ACTH response at 15 min. At 15 min post-injection, (+)8-OH-DPAT also increased levels of phosphorylated extracellular signal-regulated kinase (pERK) and phosphorylated protein kinase B (pAkt) in the PVN. As previously observed in adults, (+)8-OH-DPAT reduced levels of pERK in hippocampus. WAY100635 also completely blocked (+)8-OH-DPAT-mediated elevations in hypothalamic pERK and pAkt and the reductions in hippocampal pERK, demonstrating 5-HT1A receptor selectivity of both kinase responses. This study provides the first demonstration of functional 5-HT1A receptor-mediated ERK and Akt signaling pathways in the immature hypothalamus, activated by a dose of (+)8-OH-DPAT that concomitantly stimulates neuroendocrine responses. This information is fundamental to identifying potential signaling pathways targeted by biased agonists in the development of safe and effective treatment strategies in children and adolescents.


Assuntos
Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Sistemas Neurossecretores/crescimento & desenvolvimento , Sistemas Neurossecretores/metabolismo , Proteínas Quinases/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Hipotálamo/efeitos dos fármacos , Masculino , Sistemas Neurossecretores/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Maturidade Sexual
17.
Fitoterapia ; 128: 148-161, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29775777

RESUMO

Plant-derived natural constituents are of great interest in modern drug discovery due to their natural diversity. Viola odorata L has been traditionally used for the treatment of neuropsychiatric disorders. The present study was undertaken to isolate phytoconstituents including three flavonoids 5,7-Dihydroxy-3,6-dimethoxyflavone[1] 5,7,4'-trihydroxy-3',5'dimethoxyflavone [2] and 5,7,4'-trihydroxy-3'-methoxyflavone [3] from the whole plant of Viola odorata L and to investigate the antidepressant-like effects of these compounds and their possible mechanism of action using antagonists of the serotonergic, dopaminergic and adrenergic system. Classical animal models of depression including tail suspension test (TST) and forced swimming test (FST) using mice were used to evaluate the antidepressant-like effects. Mice were divided into various groups and were administered with either vehicle control, fluoxetine (FLX), or test compounds 1-3 intraperitoneally (i.p.). For experiments involving mechanism determination, mice were pretreated with 5-HT, dopamine and adrenergic antagonists. The brain 5-HT levels were determined following FST. Molecular docking studies were carried out to determine the binding affinity of compounds 1-3 to serotonergic receptors. The results indicated that compounds 1-3 at the dose of 1-30 mg/kg, i.p significantly decreased the immobility time in the FST and TST in mice. The reduction in immobility time was reversed by pre-treating the mice with pCPA (5-HT synthesis inhibitor) 100 mg/kg, i.p. and 5-HT receptor antagonists including WAY100635 (5-HT1a antagonist), ketanserin (a 5-HT2a antagonist) and ondansetron (5-HT3 antagonist) but not with prazosin (α1-adrenergic antagonist) and SCH23390 (D1 dopaminergic antagonist) or haloperidol (D2 dopaminergic antagonist). Moreover, in neurochemical assays, compounds 1-3 caused a significant increase in the 5-HT level in the brain tissue as compared to vehicle. These increases were reversed in the mice groups pretreated with pCPA. Furthermore, molecular docking results also depict that compounds 1-3 can interact with 5HT1A, 5HT2A, and 5HT3 receptors, and are more specific to the 5HT3 receptor subtype. In conclusion, the findings of this study clearly suggest that compounds 1-3 possess antidepressant-like effects which might be mediated via the serotonergic system.


Assuntos
Antidepressivos/isolamento & purificação , Flavonoides/isolamento & purificação , Viola/química , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Feminino , Flavonoides/farmacologia , Elevação dos Membros Posteriores , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Antagonistas da Serotonina/isolamento & purificação , Antagonistas da Serotonina/farmacologia , Natação
18.
Behav Pharmacol ; 29(5): 437-444, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29521667

RESUMO

The present study investigated the effects of estradiol (E2) on ingestive behavior after activation of 5-HT1A receptors in the lateral hypothalamus (LH) of female rats habituated to eat a wet mash diet. Ovariectomized rats treated with corn oil (OVX) or estradiol cypionate (OVX+E) received local injections into the LH of vehicle or an agonist of 5-HT1A receptors, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT; at a dose of 6 nmol). To determine the involvement of these receptors in food intake, some animals were pretreated with N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY-100635, a 5-HT1A receptor full antagonist, at a dose of 0.37 nmol), followed by the injection of the agonist 8-OH-DPAT or its vehicle. The results showed that the injection of 8-OH-DPAT into the LH of OVX rats significantly increased food intake, and the duration and frequency of this behavior. The pretreatment with E2 suppressed the hyperphagic response induced by 8-OH-DPAT in OVX animals. The inhibition of 5-HT1A receptors after pretreatment with WAY-100635 blocked the hyperphagic effects evoked by 8-OH-DPAT in OVX. These results indicate that the activity of LH 5-HT1A receptors could be affected by blood E2 levels.


Assuntos
Estradiol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/metabolismo , Feminino , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/efeitos dos fármacos , Ovariectomia , Piperazinas , Piridinas , Ratos , Ratos Wistar , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
19.
Neuropharmacology ; 142: 219-230, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29221792

RESUMO

5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT1A/5-HT2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT1A and 5-HT2A receptors. Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT2A-R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT1A-R antagonist WAY-100635. 5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity. The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.


Assuntos
Alucinógenos/farmacologia , Metoxidimetiltriptaminas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Tálamo/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Animais , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperazinas/farmacologia , Córtex Pré-Frontal/metabolismo , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT2A de Serotonina/genética , Antagonistas da Serotonina/farmacologia , Tálamo/metabolismo , Córtex Visual/metabolismo
20.
Biol Psychiatry ; 84(1): 55-64, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174591

RESUMO

BACKGROUND: Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. METHODS: We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca2+) channels in heterologous expression systems were used to determine the modulation of Ca2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. RESULTS: SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. CONCLUSIONS: These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression.


Assuntos
Antidepressivos/uso terapêutico , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Psicológico/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Fatores Etários , Animais , Células CHO , Cloreto de Cádmio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Cricetulus , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Fluvoxamina/uso terapêutico , Células HEK293 , Elevação dos Membros Posteriores/psicologia , Hipocampo/citologia , Humanos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Nifedipino/farmacologia , Paroxetina/farmacologia , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Piridinas/farmacologia , Proteínas de Ligação a RNA/genética , Ratos , Ratos Transgênicos , Ratos Wistar , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Estresse Psicológico/genética , Natação/psicologia , Transmissão Sináptica/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA